skip to main content


Search for: All records

Creators/Authors contains: "Mei, Yongfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Droplet-based microfluidics is used to fabricate thin shell hydrogel microcapsules for the removal of methylene blue (MB) from aqueous solutions. The microcapsules composed of a poly(methacrylic acid) hydrogel shell exhibit unique properties, including permeation, separation, purification, and reaction of molecular species. Photocatalytic TiO 2 and ZnO nanoparticles encapsulated in the microcapsules, i.e. photocatalyst in capsule (PIC), are used to remove organic pollutants using an adsorption–oxidation mechanism. A prototype flow microreactor is assembled to demonstrate a controllable water purification approach in short time using photocatalysts. Our studies of aqueous and homogeneous hydrogel environments for the photocatalysts provide important insights into understanding the effectiveness of MB removal. Hydrogel capsules have MB removal rate comparable to homogeneous particles. Further reduction of both capsule and photocatalyst sizes can potentially aid in quicker water purification. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Nanoparticle‐shelled bubbles, prepared with glass capillary microfluidics, are functionalized to produce catalytic micromotors that exhibit novel assembly and disassembly behaviors. Stable microbubble rafts are assembled at an air–solvent interface of nonaqueous propylene carbonate (PC) solvent by creating a meniscus using a glass capillary. Upon the addition of hydrogen peroxide fuel, catalytic microbubbles quickly break free from the bubble raft by repelling from each other and self‐propelling at the air–fuel interface (a mixture of PC and aqueous hydrogen peroxide). While most of micromotors generate oxygen bubbles on the outer catalytic shell, some micromotors contain cracks and eject bubbles from the hollow shells containing air. Nanoparticle‐shelled bubbles with a high buoyancy force are particularly attractive for studying novel propulsion modes and interactions between catalytic bubble micromotors at air–fuel interfaces.

     
    more » « less
  4. Abstract

    Conventional assembly of biosystems has relied on bottom‐up techniques, such as directed aggregation, or top‐down techniques, such as layer‐by‐layer integration, using advanced lithographic and additive manufacturing processes. However, these methods often fail to mimic the complex three dimensional (3D) microstructure of naturally occurring biomachinery, cells, and organisms regarding assembly throughput, precision, material heterogeneity, and resolution. Pop‐up, buckling, and self‐folding methods, reminiscent of paper origami, allow the high‐throughput assembly of static or reconfigurable biosystems of relevance to biosensors, biomicrofluidics, cell and tissue engineering, drug delivery, and minimally invasive surgery. The universal principle in these assembly methods is the engineering of intrinsic or extrinsic forces to cause local or global shape changes via bending, curving, or folding resulting in the final 3D structure. The forces can result from stresses that are engineered either during or applied externally after synthesis or fabrication. The methods facilitate the high‐throughput assembly of biosystems in simultaneously micro or nanopatterned and layered geometries that can be challenging if not impossible to assemble by alternate methods. The authors classify methods based on length scale and biologically relevant applications; examples of significant advances and future challenges are highlighted.

     
    more » « less
  5. Abstract

    Bioresorbable electronic technologies form the basis for classes of biomedical devices that undergo complete physical and chemical dissolution after a predefined operational period, thereby eliminating the costs and risks associated with secondary surgical extraction. A continuing area of opportunity is in the development of strategies for power supply for these systems, where previous studies demonstrate some utility for biodegradable batteries, radio frequency harvesters, solar cells, and others. This paper introduces a type of bioresorbable system for wireless power transfer, in which a rotating magnet serves as the transmitter and a bioresorbable antenna as the remote receiver, with capabilities for operation at low frequencies (<200 Hz). Systematic experimental and numerical studies demonstrate several unique advantages of this system, most significantly the elimination of impedance matching and electromagnetic radiation exposure presented with the types of radio frequency energy harvesters explored previously. These results add to the portfolio of power supply options in bioresorbable electronic implants.

     
    more » « less
  6. Small machines are highly promising for future medicine and new materials. Recent advances in functional nanomaterials have driven the development of synthetic inorganic micromachines that are capable of efficient propulsion and complex operation. Miniaturization and large‐scale manufacturing of these tiny machines with true nanometer dimension are crucial for compatibility with subcellular components and molecular machines in operation. Here, block copolymer lithography is combined with atomic layer deposition for wafer‐scale fabrication of ultrasmall coaxial TiO2/Pt nanotubes as catalytic rocket engines with length below 150 nm and a tubular reactor size of only 20 nm, leading to the smallest man‐made rocket engine reported to date. The movement of the nanorockets is examined using dark‐field microscopy particle tracking and dynamic light scattering. The high catalytic activity of the Pt inner layer and the reaction confined within the extremely small nanoreactor enable highly efficient propulsion, achieving speeds over 35 µm s−1at a low Reynolds number of <10−5. The collective movements of these nanorockets are able to efficiently power the directional transport of significantly larger passive cargo.

     
    more » « less